Maximum likelihood estimation of population growth rates based on the coalescent.

نویسندگان

  • M K Kuhner
  • J Yamato
  • J Felsenstein
چکیده

We describe a method for co-estimating 4Nemu (four times the product of effective population size and neutral mutation rate) and population growth rate from sequence samples using Metropolis-Hastings sampling. Population growth (or decline) is assumed to be exponential. The estimates of growth rate are biased upwards, especially when 4Nemu is low; there is also a slight upwards bias in the estimate of 4Nemu itself due to correlation between the parameters. This bias cannot be attributed solely to Metropolis-Hastings sampling but appears to be an inherent property of the estimator and is expected to appear in any approach which estimates growth rate from genealogy structure. Sampling additional unlinked loci is much more effective in reducing the bias than increasing the number or length of sequences from the same locus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach.

A new method for the estimation of migration rates and effective population sizes is described. It uses a maximum-likelihood framework based on coalescence theory. The parameters are estimated by Metropolis-Hastings importance sampling. In a two-population model this method estimates four parameters: the effective population size and the immigration rate for each population relative to the muta...

متن کامل

LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters

UNLABELLED We present a Markov chain Monte Carlo coalescent genealogy sampler, LAMARC 2.0, which estimates population genetic parameters from genetic data. LAMARC can co-estimate subpopulation Theta = 4N(e)mu, immigration rates, subpopulation exponential growth rates and overall recombination rate, or a user-specified subset of these parameters. It can perform either maximum-likelihood or Bayes...

متن کامل

A fast and reliable computational method for estimating population genetic parameters.

The estimation of ancestral and current effective population sizes in expanding populations is a fundamental problem in population genetics. Recently it has become possible to scan entire genomes of several individuals within a population. These genomic data sets can be used to estimate basic population parameters such as the effective population size and population growth rate. Full-data-likel...

متن کامل

Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach.

A maximum likelihood estimator based on the coalescent for unequal migration rates and different subpopulation sizes is developed. The method uses a Markov chain Monte Carlo approach to investigate possible genealogies with branch lengths and with migration events. Properties of the new method are shown by using simulated data from a four-population n-island model and a source-sink population m...

متن کامل

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 149 1  شماره 

صفحات  -

تاریخ انتشار 1998